Welcome to the official website of CNIACS Automation Technology Co., Ltd!

IS215VCMIH2CC Bus Master Controller Module Communication Converter Card

Functional Description

The IS215VCMIH2CC is a GE-developed bus master controller module that is part of the Mark VI control system.

It is part of the Mark VI control system.The VCMI bus master controller plays a key role in the system architecture as an integrated communications interface that coordinates the exchange of data and commands.

As the link between the master dcs-sis.com controller and the array of I/O boards, the VCMI ensures smooth and efficient communication channels and facilitates seamless integration of the various components.

In addition, VCMI’s importance is reflected in its connection to the wider system control network, known as the IONet, which plays a vital role in coordinating communications across the network infrastructure.  

Features

A distinctive feature of the VCMI is that it acts exclusively as a VMEbus master within the control and input/output racks.

The VCMI is responsible for the VMEbus, a standardized computer bus structure, and oversees the coordination of data transfer and control signals within these racks.

The VCMI manages the assignment of unique identification (ID) to all boards in the rack and their associated terminal boards.

This ID management function ensures that the various components within the rack are identified and interacted with in a systematic and organized manner, thereby increasing the overall efficiency and reliability of the system.

The VCMI Bus Master Controller is a multifaceted communications hub that seamlessly connects controllers, I/O boards and the broader system control network.

As a VME Bus Master Controller in a given rack, it enhances its ability to manage and optimize the flow of information, ultimately improving the performance and cohesiveness of the integrated system.

Board Type: 6U High VME Boards

The boards specified are classified as 6U High VME boards and are dimensioned to meet the widely adopted VME standard. At 6U high, the boards conform to a standard form factor and are compatible with a range of systems and platforms that meet the same specifications.

At 0.787 inches wide, this VME board integrates seamlessly into the VME chassis, contributing to the modularity and scalability of the overall system.

Honeywell FC-SCNT01 51454926-176 Safety Controller Module

OVERVIEW

The Honeywell FC-SCNT01 is a safety controller module designed for industrial process safety applications.

It acts as the brain of the Safety Instrumented System (SIS), performing critical Safety Instrumented Functions (SIFs) to maintain safe operations.

Functional Features

Dual-channel architecture: Ensures redundancy and fault tolerance for reliable safe operation.

SIL 3 certification: Highest level of safety integrity for critical applications.

Eight channels: Flexibility to monitor a wide range of process parameters.

24VDC input voltage: Compatible with standard industrial power supplies.

400mA output current: To drive safety-related actuators and devices.

Technical Specifications

Number of channels 16 (8 inputs, 8 outputs)

Rated Voltage: 24VDC

Refer to data sheet for current ratings.

Safety ratings Conforms to relevant safety standards (ATEX, IECEx)

Operating Temperature Typically -40°C to +70°C

Main Functions:

Input Functions: The FC-SCNT01 module is dcs-sis.com capable of receiving input signals from field devices, such as fire alarm signals from smoke detectors, door and window opening and closing status, etc. The input signals are processed and then processed by the FC-SCNT01 module.

These input signals are processed and sent to the main controller of the security system.

Output Function: The module is able to receive output commands from the main controller and convert these commands into appropriate control signals to control the field devices.

For example, when the controller receives a fire alarm signal, it can send commands through the FC-SCNT01 module to cause door locks to open automatically or to activate an evacuation alarm.

Communication Interface: FC-SCNT01 modules usually use standard communication protocols to communicate with the host controller to ensure reliable data transmission in the system.

Power supply and power isolation: Modules are usually equipped with power isolation to ensure that no damage is caused to the system in case of power failure or abnormal conditions.

Status Indicators: Modules may be equipped with status indicators to indicate the status of input/output signals, power supply status, and possible fault status.

Overall, the Honeywell FC-SCNT01 51454926-176 is a powerful input/output module that is

capable of receiving and processing input signals from field devices and controlling field devices according to the commands of the main controller, and is an integral part of the safety system.

Rexroth VT 2000-52 Bosch Rexroth Electrical Amplifiers

Features:

– Ideal for controlling direct-acting and pilot-operated proportional pressure control valves without electrical position feedback

– Differential Inputs

– Additional command value input, 0 to +9 V

– Ramp generator with separately adjustable rising and falling ramps

– Clock current output stage

– Clock Current Output Stage Reverse Voltage Supply Polarity Protection

– Short circuit protection

Function Description

The command value voltage can be applied to command value input 1 directly or via an external command value potentiometer using the regulated voltage of + 9 V of the power supply unit [8].

For this input the following conditions are valid: + 9 V = + 100 % 1).

Command value input 2 is a differential input [1] (0 to + 10 V). This input must be used if the command value is fed forward from an external electronic device with another reference potential (e.g. from the PLC).

This input must be used. When cutting in or out the command value voltage, take care to connect the two signal lines to or disconnect them from the input.

Prior to transmission, the two command values are dcs-sis.com summed [2] and fed to the potentiometer [3], which is available on the front panel of the card and is used as an attenuator to limit the maximum command value.

The Downstream Ramp Generator [4] generates a ramp-shaped output signal from the step input signal. The time constant of this signal can be adjusted to ramp up and ramp down using two potentiometers.

The specified ramp time is related to the command value step change of 100% and can be about 1 sec. or 5 sec. depending on the jumper setting. If a command value step change of less than 100 % is applied at the input of the ramp generator or when the attenuator [3] is set, the ramp time can be adjusted upwards and downwards.

or when the attenuator [3] is active, the ramp time is shortened accordingly.

With the aid of the external contact “ramp up/down”, the ramp time can be set to a minimum value (approx. 30 ms) for the upper and lower ramp times respectively.

The output signal of the Ramp Generator [4] is an internal current command value and is fed into the measurement socket “w” on the front panel of the card.

In addition, the command value is transferred to the current output stage [6] via the current regulator [5].

The current regulator [5] adds the value of the bias current potentiometer “Zw” (R130) to the value of the ramp generator.

The current command value is modulated by the clock pulse encoder signal [7]. The clocked actual current value acts like a constant current and superimposes a jitter signal in the valve solenoid.

The actual current value through the solenoid valve can be measured at socket “I”. Here, a voltage of 800 mV corresponds to a current of 800 mA.

Emerson A6500-RC 16-Channel Output Relay Module

The 16-channel output relay module is designed to provide high reliability for the plant’s most critical rotating machinery.

This monitor is used in conjunction with the AMS 6500 ATG to form a complete API 670 machinery protection monitor.

Applications include steam, gas, compressor and hydraulic turbine machinery.

Any channel dcs-sis.com of clear, alarm or warning signal can be selected as an input to the 16-channel output relay module.

Configuration is accomplished using Boolean logic, applying time delays and selecting output relays.

Easy-to-use software provides a graphical logic display that graphically guides the user through the configuration.

The AMS 6500 Machinery Health Monitor is an integral part of PlantWeb® and AMS software.

PlantWeb provides operation in conjunction with Ovation® and DeltaV™ process control systems – integrating machinery health.

AMS software provides maintenance personnel with advanced predictive and performance diagnostic tools that enable them to identify machine failures early with confidence and accuracy.

3U-sized, 2-slot plug-in modules cut cabinet space requirements in half compared to traditional 6U cards.

API 670-compliant, hot-swappable modules.

66 inputs, 16 logic networks, 16 relay outputs.

The A6500-RC is a 10TE wide module for use in the A6500-SR rack.

Multilin 745-W2-P1-G1-HI-T-H Transformer Protection Relay

The GE Multilin 745-W2-P1-G1-HI-T-H Transformer Protection Relay features transformer overload protection and overexcitation protection to ensure smooth transformer operation.

It also monitors, records and displays trends in system variables such as temperature, voltage, power, energy consumption and dcs-sis.com rate of change of frequency.

Product Description

The 745-W2-P1-G1-HI-T-H is a GE Multilin transformer protection relay that extends transformer life expectancy and optimizes transformer performance.

It protects and manages small, medium and large transformer systems. Part of the 745 Series, the 745-W2-P1-G1-HI-T-H features transformer overload protection and overexcitation protection to keep transformers running smoothly.

It also monitors, records and trends system variables such as temperature, voltage, power, energy consumption and frequency rate of change.

These values can be quickly referenced through the relay’s software program, Enervista 745.

The Enervista 745 software program can also be used to edit setpoints. Utilizing GE Multilin’s quick connect feature, the

Connecting the relay to a computer is simple with the GE Multilin Quick Connect feature. The connection can be established via Ethernet, the RS232 port on the front, or the RS485/RS422 port on the back of the panel.

The program assists in managing system setup and automatically flags programming errors or conflicts as the user adjusts setpoints.

The 745-W2-P1-G1-HI-T-H’s enhanced 40-character display is larger than the base model and includes an extended keypad for easy manual setpoint entry.

The enclosure is 9″ high by 7″ wide by 7 ⅛” deep. The transformer protection system can be mounted on a standard 19″ panel, but care should be taken that the enclosure door opens and closes freely without contact with other components.

A number of LEDs on the front of the chassis alert the user to various statuses and errors in real time.

Frequently Asked Questions about the 745-W2-P1-G1-HI-T-H

What makes the Multilin 745-W2-P1-G1-Hi-T-H unique compared to other transformer protection relays in the 745 series?

The 745-W2-P1-G1-Hi-T-H Multilin transformer protection series contains unique options that differ from other part numbers.

Notably, the “-H” option indicates that the relay has a harsh chemical environment conformal coating for operation in harsh environments.

The T option in the 745-W2-P1-G1-Hi-T-H Multilin Dual Winding Transformer Management Relay differs from other relays in the 745 system in terms of display and Ethernet.

Transformer protection systems without the T option have either a basic display (B) or an enhanced display (E) with a larger LCD.

The T option comes with an enhanced display, larger LCD, and 10Base-T Ethernet.

Emerson A6110 Shaft Relative Vibration Monitor

Since the displacement transducer is mounted on the bearing, the monitored parameter is known as shaft relative vibration, i.e. shaft vibration relative to the bearing box.

Shaft relative vibration is an important measurement parameter used for prediction and protection monitoring on all plain bearing machines.

Shaft relative vibration should be selected when the machine housing is large compared to the rotor and the bearing housing does not vibrate between the zero speed of the machine and the production state speed.

Absolute shaft vibration is sometimes selected when the bearing housing and rotor are relatively close in mass, when the bearing housing is more likely to vibrate and affect the relative shaft reading.

The AMS 6500 is an integral part of PlantWeb® and AMS software.

PlantWeb provides a comprehensive view of machine health in conjunction with the Ovation® and DeltaV™ process control systems.

AMS software provides maintenance personnel with advanced predictive and performance diagnostic tools that enable them to confidently and accurately determine machine failures early.

Features:

Dual-channel, 3U-sized, 1-slot plug-in module that cuts cabinet space requirements in half compared to traditional four-channel 6U cards

API 670-compliant hot-swappable modules

Remotely selectable limit multiplication and trip bypass

Pre- and post-buffered and proportional www.cniacs.com outputs, 0/4-20 mA outputs, 0 – 10 V outputs

Self-test features include monitoring hardware, power inputs, hardware temperature, sensors and cables,

Hardware temperature, sensors and cables

For use with displacement sensors PR6422. PR6423. PR6424. PR6425 and drivers CON 011/91. 021/91. 041/91

Sensor inputs

Number of inputs: two, independent or combined

Monitoring mode

Input types: eddy current, differential

Emerson sensor inputs: Part numbers: 6422. 6423. 6424. 6425

Isolation: Galvanically isolated from power supply

Input resistance: >100 kΩ

Input Voltage Range: 0 to -22 VDC

Input Frequency Range

Lower cut-off frequency 1 or 5 Hz

Upper cut-off frequency 50 – 2000 Hz adjustable

Multilin 489 Generator Protection System SR Series Relays

The Multilin™ 489 Generator Protection System is a member of the SR Series of relays that provides protection, control, and advanced communications in an industry-leading drawout configuration.

Designed for small to medium sized generators, the 489 offers advanced protection features, including generator stator differential protection. 489 also includes detailed diagnostic information to reduce troubleshooting time.

Key Benefits

– Comprehensive, safe protection for small and medium-sized generators

– Easy-to-use generator protection system supported by an industry-leading suite of software tools.

– Advanced protection and monitoring features, including stator and bearing thermal protection using RTDs and vibration monitoring using analogue inputs

– Globally recognised as a member of the most prestigious relay protection product family on the market

– Drawer construction to minimise downtime and facilitate removal/installation during routine maintenance 489

– Large, user-friendly front panel interface for real-time power monitoring and setpoint access, with a display that is easy to read in direct sunlight

– Enhanced generator troubleshooting capabilities through the use of IRIG-B time-synchronised event logging, waveform capture and data logger

– Simplifies setpoint verification testing with built-in waveform simulation capabilities

– Cost-effective access to information through industry-standard communications hardware (RS232. RS485. 10BaseT Ethernet) and protocols (Modbus RTU, Modbus TCP/IP, DNP 3.0)

– Can be used in most extreme locations by offering harsh chemical environment options

Applications

– Synchronous or induction generators operating at 25Hz, 50Hz or 60Hz

– Primary or backup protection in cogeneration applications

Protection and control

The 489 generator protection system provides comprehensive protection, metering and monitoring functions,

The 489 generator protection system provides comprehensive protection, metering and monitoring functions for small and medium-sized synchronous or induction generators operating at 25. 50 or 60 Hz.

The 489 is ideal for primary or standby generator protection as well as cogeneration applications.

The 489’s protection features include:

Generator stator differential

The 489 uses high speed dual slope differential protection to detect and clear stator phase faults.

Stator phase faults. Advanced CT saturation detection algorithms provide additional supervision through the use of directional checks that

ensures that the fault occurs inside the generator before triggering a trip, thus maintaining immunity to saturation that may be caused by external disturbances.

100% Stator Ground

100% stator ground fault protection is provided by an overvoltage element and an adaptive differential voltage function that responds to third harmonic imbalances at the machine terminals and neutral.

SR469-P5-LO-A20-T Relay Protector Module

The SR469-P5-LO-A20-T has a 5 amp current transformer secondary coil mounted on the base unit.

It is a low control power unit rated for 24-60 volts DC or 20-48 volts AC @ 48-62 Hz.

Although the unit has an optional Ethernet port, it does not include the optional DeviceNet or enhanced front panel.

Product Description

The SR469-P5-LO-A20-T is an SR469 multi-wire relay designed to provide comprehensive protection for medium to large motors. The unit offers many management features.

The SR469-P5-LO-A20-T has a 5 amp current transformer secondary coil mounted on the base unit.

It is a low control power unit rated for 24-60 volts DC or 20-48 volts AC @ 48-62 Hz.

Although the unit has an optional Ethernet port, it does not include the optional DeviceNet or enhanced front panel.

In addition, it is not designed for harsh environments as it does not include a chemically conformal coating.

The SR469-P5-LO-A20-T includes an optional Ethernet 10BaseT Ethernet port.

With this additional port, users can connect their 469 units to 10 Mbps Ethernet.

This port brings the number of ports in the unit to four, including the three standard serial ports that are always displayed in the SR469 relay.

All SR469 relays have two RS485 ports on the real panel. In addition, there is an RS232 port on the bottom of the front panel.

This port provides quick access for troubleshooting and programming.The SR469-P5-LO-A20-T supports ModBus RTU and ModBus RTU via TCP/IP.

The GE Multilin manual will provide the user with additional information on installation, safety and proper operation.

Original documentation such as manuals and user guides should be read and understood before opening the box; this will ensure that you are aware of all possible hazards and ensure your safety.

Frequently Asked Questions about the SR469-P5-LO-A20-T

What are the standard features of the SR469-P5-LO-A20-T General Electric Motor Management Relay?

All 469 Motor Management Relay features are standard. Although the analogue output range, phase current transformer secondary and control power must be specified prior to purchase, the

to ensure that the correct standard features are purchased for the relay. Some features are programmable, such as the 469 relay’s differential current transformer input with a 1A or 5A secondary current transformer.

SST Molex SST-PB3-SLC Communication Module

The SLC processor reads input data from the scanner during input scanning and writes output data during output scanning. The scanner reads input data from the slaves and writes output data to the slaves independent of the operation of the SLC.

Slave status, diagnostic status information for all slaves, network diagnostic counters and DP master diagnostic counters are maintained by the scanner.

A G-file is required in the SLC.

Features and Benefits

100% backward compatible with previous generation (SST-PFB-SLC)

Manages DP-V1 services, www.cniacs.com including SLC ladder logic sampling

M0 and M1 data areas doubled up to 1000 words

PROFIBUS DP master configuration software

Supports all PROFIBUS baud rates

Simultaneous operation of PROFIBUS DP masters and slaves

For storing DP

Master I/O configuration

Quick and easy installation on the SLC backplane, PROFIBUS I/O data is automatically mapped to the I/O files of the SLC processor and to the MO and MI files residing on the PB3-SLC.

Supports export of configuration files from SST DP Configuration Software and Siemens COM PROFIBUS

Multiple SST-PB3-SLC modules can be used in one SLC rack

MOOG L180 Programmable Servo Driver

The L180 servo drive features the following:

Power supply

– Single-axis unit that includes a regenerative module to minimise wiring and space requirements.

– 230 V three-phase or single-phase.

– Optional: External filter in the power supply is CE compliant.

– The drive is designed to Protective Extra Low Voltage (PELV) standards. An autotransformer is sufficient for the mains input.

Power Driver

– Galvanic isolation between control and power electronics.

– IGBT output stage.

– Digital PWM current loop provides low ripple motor current and high motor efficiency.

Digital Controller

– Fully digital servo drive for brushless motors with resolver.

– Easy software download via RS232 serial connection.

– Temperature regulated fan cooling.

– Multi-loop control (torque and speed).

– Sine current output ensures smooth torque and performance at low speeds.

– 7-segment status indicator for diagnostic display.

User Inputs

– ±10VDC differential analogue www.cniacs.com input for speed or current commands.

– RS232 serial port.

– Limit switches for bi-directional overrun protection.

– Optional external 24VDC power supply for control and interface boards in the event of a mains power failure.

User Outputs

– Programmable incremental encoder analogue output with 1 to 2048 ppr resolution (extrapolated), differential RS 422 line driver output.

– Programmable supervisory relays to indicate ready, alarm or enabled status.

Protection Features

– The power stage is short-circuit and thermal protected.

– Motor thermal protection through I²t limiting and thermistors.

– Detects resolver faults and motor wiring faults.

Search for products

Back to Top
Product has been added to your cart