Welcome to the official website of CNIACS Automation Technology Co., Ltd!

IC200MDL643 Discrete Input Module

Product Description The IC200MDL643 Discrete Input Module is a 5/12 Vdc Versamax positive/negative logic input module from GE Fanuc.

It has 2 sets of 16 inputs with 0 to 15 volts DC and an input impedance of 2.4 kilohms.

The IC200MDL643 Discrete Input Module is a GE Fanuc Versamax 24 Vdc rated positive/negative logic input module with 16 inputs in 2 groups.

The inputs support both positive and negative logic. Positive logic inputs send current to the common and negative logic inputs do the opposite, receiving current from the common.

Inputs with negative logic configurations are compatible with TTL devices. The backplane provides all power for module operation.

The IC200MDL643 discrete input module provides 16-bit discrete input data. The device has a typical input impedance of 2.4K ohms at 12 volts DC.

The IC200MDL643 discrete input module has a minimum on-state current of 1.45 mA and a minimum off-state current of 0 to 0.7 mA.

On and off response times are up to 0.25 ms. It also provides three configurable input filtering times to compensate for the 0.25 ms, 0.5 ms, and 0.5 ms on/off response times.

It also provides three configurable input filtering times to compensate for noise spikes and switching jumps of 0.25 ms, 1.25 ms, and 7.25 ms. Two input groups have a common connection point.

One group can be wired for positive or negative logic. If the system requires additional bus terminals.

A shorting bar with 2 amps of current-carrying capability is also available for use with the B-terminal.

The IC200MDL643 discrete input module has an input voltage of 0 to 15 volts DC and a user input current of 1.8 milliamps at 5 volts DC and 4 milliamps at 12 volts DC.

The user input current is 1.8 mA at 5 volts DC and 4.9 mA at 12 volts DC. It has no thermal derating and no external power supply.

During installation, make sure that hot plugging and unplugging is done correctly to avoid backplane interruptions.

Honeywell ControlEdge HC900 Controller

Applications 

Mining and metals Furnaces, kilns, boilers 

Chemicals, extruders Autoclaves 

Pharmaceutical sterilisers, dryers 

Railway/ Infrastructure Burner Mgmt, 

HVAC/ data centres Combustion control 

Pulp & Paper Emergency Shutdown 

Cement and glass Pipeline monitoring 

Power Leak Prevention

Functional Overview 

– Supports split-rack redundancy 

– Supports Honeywell FDM (Field Device Manager) with HART IP 

– Supports HART function blocks (Commands 3 and 48) 

Note: HART support requires a UIO module 

– Non-redundant and redundant architectures 

– Sequence of Events Support (SOE) 

Note: Supported only in non-redundant UIO configurations.

– Redundant and Non-Redundant Safe General Purpose IOs 

– PID control with advanced Accutune III auto-tuning 

– Secure peer-to-peer communication between ControlEdge HC900 controllers 

– External watchdog timer with independent clock to detect unexpected CPU lockups 

– Adjustable recipe pool memory allocates memory for recipes, SP profiles, sequences, and schedules to meet your needs 

– Up to 4608 points can be connected via remote I/O 

– Boolean logic programming. powerful combination of over 100 algorithms

– Advanced floating-point maths functions.

– Extensive alarm and event monitoring 

– Up to 2304 galvanically isolated analogue input points 

– Up to 1008 redundant UIO points 

– New I/O voting and output verification function blocks.

– Remote I/O racks with wires for extended distances.

– Star or ring topology on the IO network using recommended switches 

– Scanners and I/O plugged in and out while powered 

– LED on/off indicators on digital I/Os 

– Graphical Function Block Configuration 

– Open 10MB or 10/100MB Ethernet interface using Modbus/TCP. Point-to-point communication via Ethernet 

– Priority email alarm/event messages

– Ramp/soak setpoint programmer 

– Setpoint scheduler with multiple outputs 

– Sequencer with 16 outputs each 

– Modbus read/write parameters can be assigned to fixed or custom addresses for HMI or monitoring software access.

– Modbus TCP Initiator 

– Gas flow function block compliant with American Gas Association specifications. (Non-safety configurations only).

– Calendar module for triggering events 

– Non-intrusive process/safety worksheets to handle both process and safety configurations.

– Built-in version control 

– Quick update – 10 ms digital update and UIO (900U02-xxxx) 100 ms analogue update 

Mark VIe Series IS200TSVOH1BAA Servo I/O Terminal Block


Operation:

The VSVO provides four channels including bi-directional servo current outputs, LVDT position feedback, LVDT excitation, and pulse rate flow inputs.The TSVO provides excitation for, and accepts inputs from, up to six LVDT valve position inputs. One, two, three, or four LVDTs can be selected for each servo control loop, and if three inputs are used, they can be used for gas turbine flow measurement applications. These signals are transmitted through the TSVO and sent directly to the front of the VSVO board at J5. Each servo output is equipped with a firmware-controlled, independent suicide relay that short-circuits the VSVO output signal to common in the event of a power failure and returns it to the nominal limit when a manual reset command is issued. Diagnostics monitor the output status of each servo voltage, current, and suicide relay.

Description:

General Electric’s IS200TSVOH1BAA circuit board assembly is part of the company’s Mark VI turbine control system. The Mark VI has been monitoring and controlling industrial turbine systems for decades. Meanwhile, Speedtronic systems have been in use since the late 1960s.

This IS200TSVOH1BAA is used as a servo valve termination board. While MKVI systems use many different termination boards, this particular board is a barrier type board that uses screws to clamp the wire connections. When connecting wires to the terminals, it is important to strip the wires to the correct length; otherwise, the screw clamps will be difficult to access.

This IS200TSVOH1BAA has two termination blocks located on one side of the board. Other connectors used on the board include d-shell connectors and vertical plugs. The board has six jumper switches that can be used to change the way a particular circuit works. Each jumper switch on the board has multiple settings. Before removing a jumper from the unit, be sure to make note of the way the jumpers were set on the previous board; best practice suggests duplicating these settings on the new assembly.

Other board components include relays, transformers, ICs, and transistors. For more information on these components and how the board should be located, wired, installed, and maintained, refer to the GE Speedtronic manual.

Mark VIe Series IS200VSVOH1B VME Servo Control Panel

The IS200VSVOH1B is a VME servo control board manufactured by General Electric as part of the Mark VI series used in gas turbine control systems. The four electrohydraulic servo valves that operate the steam/fuel valves are under the direction of the servo control (VSVO) board. Typically, two servo terminal boards are used to separate these four channels (TSVO or DSVO). The valve position (LVDT) is determined using a linear variable differential transformer.

The VSVO performs a cyclic control algorithm. Three cables are connected to the VSVO at the J5 plug on the front panel and at the J3/J4 connectors on the VME rack. the JR1 connector is used for the

TSVO to provide simplex signals, while the JR1. JS1 and JT1 connectors are used to fan out TMR signals. The external trip of the protection module is inserted into JD1 or JD2.

IS200VSVOH1B Installation

Close the VME’s processor rack.

Place the board in place, then hand press the top and bottom ties into the base of the edge connector.

Tighten the plus screws at the top and bottom of the front panel.

The cable connections to the TSVO terminal board are made at the lower J3 and J4 connectors of the VME rack. They are locking the connections in order to secure the cables. Start the VME rack and check the diagnostic indicators on the front panel.

IS200VSVOH1B Operation

LVDT position feedback, LVDT excitation, bi-directional servo current outputs, and pulse rate flow inputs are contained within the four channels of the VSVO.

The TSVO can provide excitation for up to six LVDT valve position inputs, and the TSVO accepts inputs from them as well. For each servo control loop, one, two, three or four LVDTs can be selected.

For applications measuring gas turbine flow, three inputs are provided. These signals are routed through the TSVO and sent directly to J5 on the front of the VSVO board. when power is lost, each servo output has a dedicated suicide relay which, when controlled by firmware, short-circuits the VSVO output signals to common and then returns to normal operation after a manual reset command.

Each servo’s output voltage, current, and suicide relay are monitored through the diagnostic function.

Mark VIe Series IS200TVIBH2B Vibration Terminal Block

GE IS200TVIBH2BBB The IS200TVIBH2B is a turbine control line module.

It is a high-performance, high-reliability module designed to meet the demanding requirements of turbine control applications.

The module is designed for use in a variety of applications including power generation, oil and gas, and petrochemicals.

The vibration termination board IS200TVIBH2B is one of the boards in the Mark VIe control system designed by General Electric.

This board is not compatible with any of the boards in the Mark VIe family, with the exception of the VVIB board. This board will have similar functionality to the TVBA board.

This board can be used not only in Mark VIe systems but also in Mark VI systems.

When the TVIB board is used in a Mark VI system, it can be supported in a TMR or Simplex system.

Up to two panels can be used to connect to the VVIB board. When this board is used in a TMR system, a single TVIB board will connect to three VVIB boards.

The IS200TVIBH2B board does not have any potentiometers and does not require any calibration.

On the face of the board, there are sixteen jumper switches that can be modified to suit the user’s needs. There are two barrier terminals for different types of vibration.

Technical Specifications

Number of I/O channels: 16

Input Type: Analog

Input range: 0 to 10 V

Output type: analog

Output range: 0 to 10 V

Accuracy: 0.1%

Resolution: 12 bit

Sample rate: 100 kHz

MTBF: Over 100.000 hours

APPLICATIONS

Power Generation

Oil & Gas

Petrochemical

Chemical

Food & Beverage

Pharmaceuticals

Water and Wastewater

MKVI Gas Turbine Control System IS200TBCIH1C Contact Input Terminal Block

Features:

Terminal Block Design: This IS200TBCIH1C features a rugged rectangular design with two long green terminals that provide ample connectivity for analog output signals.

Connectivity: The board features 6 jack connector ports, each equipped with 37 female connector points for seamless integration with external devices.

Potentiometers: 16 small potentiometers, organized in two rows, provide enhanced control and adjustment capabilities, allowing fine tuning of the output signals.

Noise and Surge Suppression: Filters designed to reduce high frequency noise and suppress surges, ensuring signal integrity and system stability.

Current Load Capability: The first 21 outputs are capable of handling 2.5 mA of current per point, and the last three outputs are loaded with 10 mA to meet varying output requirements.

Hardware Configuration: Simplified configuration without hardware setup or jumpers simplifies integration within the Speedtronic MKVI system.

Reliability: Known for its reliability and durability, it ensures consistent performance in demanding turbine control environments.

Compatibility:

The IS200TBCIH1C terminal block is fully compatible and integrated into the Speedtronic MKVI gas turbine control system.

It is terminated via external I/O for use primarily with GE Speedtronic Mark VI series turbine control systems.

The board’s multi-layer PCB design, fitted with SMD components and connectors, ensures compatibility with different system architectures and configurations.

GE’s ongoing revision demonstrates GE’s ongoing efforts to improve compatibility and integration with the Speedtronic MKVI system.

Applications:

The IS200TBCIH1C terminal block has applications in a variety of industries, including:

Power Generation: used in power plants equipped with gas turbines to monitor and control analog output signals critical to turbine operation and efficiency.

Oil & Gas: plays a vital role in controlling processes associated with gas turbines used in extraction, refining and distribution operations.

Chemical Processing: Provides accurate analog output signals for precise control of various chemical processes in the chemical processing industry.

Manufacturing: Ensures smooth operation and control of turbine-driven machinery in manufacturing facilities.

Renewable Energy: Integrate into control systems for renewable energy sources such as wind or solar to effectively manage analog output signals.

Water Treatment: Controls pumps, valves, and other equipment critical to water treatment processes to ensure efficient and reliable operation.

Petrochemical: Supporting precise control of processes within refineries and petrochemical plants to improve operational efficiency and safety.

Aerospace: Turbine control systems for aircraft engines, ensuring reliable and accurate analog output control.

Mark VIe Series IS2020JPDBG01 Power Distribution Boards

Functional Description:

The IS2020JPDBG01 is a power distribution board manufactured and designed by General Electric as part of the Mark VIe series used in GE distributed control systems.

The JPDB board for AC power distribution regulates, monitors, and decentralizes AC power. The module contains two line filters and an IS200JPDB board.

The module contains two independent AC power distribution circuits, each rated at 20 A at 115 or 230 V AC.

The input circuits should be wired in parallel to prevent PPDA alarms when only one AC power source is available.

Each circuit has one fuse output and three fuse and switch branch circuit outputs. the JPDF 125 V DC power distribution module has an optional connection.

The IS200JPDB has status feedback for all fuse circuits and passive supervisory circuits for both AC ranges.

On connector P1 is the supervisory circuitry for connecting cables to the board containing the power supply diagnostic PPDA I/O packages.

Port P2 on the IS200JPDB allows monitoring signals from other power distribution system cards to pass through.

Compatibility:

The JPDE, JPDF, JPDS, and JPDM feedback signal P1 and P2 connections on the IS2020JPDB are compatible, resulting in a PPDA I/O package. The AC input on the JPDF module of the same name can be used with connector JAF2.

Installation:

In the PDM cabinet, the IS2020JPDB module is mounted vertically on a metal rear base. The protective grounding system and the IS2020JPDB sheet metal must be connected.

For the first AC circuit, input power is delivered to terminals AC1H (line) and AC1N (neutral), and for the second AC circuit, input power is delivered to AC2H (line) and AC2N (neutral).

There must be a grounded neutral connection on both AC inputs. Follow the documentation for the system’s output circuit connections.

If the distribution system has a PPDA Power Diagnostics I/O package, a 50-pin ribbon cable is required to connect JPDB connection P1 to connector P2 on the board with the PPDA. Other core PDM boards can use the P2 connector for this connection.

Woodward 2301A Electronic Load Sharing and Speed Control

Description

The 9905/9907 series of the Woodward 2301A controls load sharing and speed of generators driven by diesel or gasoline engines, or steam or gas turbines. 

These power sources are referred to as “prime movers” throughout this manual.

The control is housed in a sheet-metal chassis and consists of a single printed circuit board. All potentiometers are accessible from the front of the chassis.

The 2301A provides control in either isochronous or droop mode.

The isochronous mode is used for constant prime mover speed with:

 Single-prime-mover operation;

 Two or more prime movers controlled by Woodward load sharing control systems on an isolated bus;

 Base loading against an infinite bus with the load controlled by an Automatic Power Transfer and Load (APTL) Control, an Import/Export Control, a Generator Loading Control, a Process Control, or another load-controlling accessory.

The droop mode is used for speed control as a function of load with:

 Single-prime-mover operation on an infinite bus or

 Parallel operation of two or more prime movers.

The following is an example of the typical hardware needed for the 2301A system controlling a single prime-mover and generator:

 A 2301A electronic control

 An external 20 to 40 Vdc power source for low-voltage models; 90 to 150 Vdc or 88 to 132 Vac for high-voltage models

 A proportional actuator to position the fuel-metering device 

 Current and potential transformers for measuring the load carried by the generator.

Honeywell UDC1200 and UDC1700 Universal Digital Controllers

Product Overview

The UDC1200 and UDC1700 are microprocessor-based 1/16 DIN and 1/8 DIN controllers that offer high functionality, high reliability and low cost.

They are designed to monitor and control temperature, pressure and level in a variety of applications such as environmental chambers, furnaces, ovens, packaging machines and other applications in the plastics, food and beverage industries.

other applications in the industry.The UDC1200 and UDC1700 are easy to configure and use with large, easy-to-read dual 4-digit displays and touch-sensitive keypads.

Their outstanding flexibility allows you to configure any unit for any application and make changes when needed.

For the thousands of satisfied UDC1000/1500 users, the UDC1200/1700 controllers are backward compatible with existing UDC1000/1500 applications and installations.

Functional Features

Dual Displays

Two 4-digit displays with 7 LED segments, each configurable as

 PV and SP (non-adjustable)

 PV and SP (adjustable)

 PV and ramp SP

 PV only

Easier Configuration

Two different configuration levels (Configuration Mode and Setup Mode) provide easy access to parameters.

4-digit security code prevents unauthorised changes.

Positive Moisture Protection

Meets NEMA 3 / IP65 standards for frontal dust and water resistance.

Universal Inputs

Accepts seven different types of thermocouple, RTD, current and voltage linear inputs. All inputs can be configured as standard.

Universal Power Supplies

The UDC1200 and UDC1700 can operate on any line voltage from 50/60 Hz, 90 Vac to 264 Vac. Optional 24/48 Vac/dc models are also available.

Easy Upgrade

All option boards have no jumpers and are automatically detected by the instrument.

Easy Output Selection

All of the instrument’s outputs, including the control output, can be changed to meet the customer’s exact needs.

Kongsberg RCU500 Remote Control Unit

The RCU 500 is a stand-alone computer designed for process control.

Typical applications include

– Dynamic positioning systems

– Vessel control systems

– Process control systems

– Safety systems

Functional Features

– Power PC processor 8245. 400 MHz, running AIM and DP applications, 32 MB SDRAM memory and 16 MB flash memory

– Built-in self-test (BIST) device and error reporting system (via operator station)

– Watchdog with system status output

– Four general-purpose digital input channels

– Four general-purpose digital output channels

– Twelve general-purpose RS-232/RS-422/RS-485 serial line interfaces

– Four isolated RS-232/RS-422/RS-485 general-purpose serial line interfaces

– Dual CAN bus interfaces (1 Mbps)

– Dual Pro bus (12 Mbps)

– Serial Process Bus (SPBus) interface to RIO 400 remote I/O devices

– Dual 100 Mb Ethernet LAN connectors

– Prepare for redundant RCU operation

– Allows “hot swap” of RCU 500 in redundant systems

– Built-in high temperature and cooling fan alarms

– Easy to install and replace:

– DIN standard rail mounting

– Plug-in connection

– LED status indicator on the front

Search for products

Back to Top
Product has been added to your cart