Welcome to the official website of CNIACS Automation Technology Co., Ltd!

Fanuc VME-7807RC VMEbus Single Board Computer

Function

– Intel® Pentium® M at 1.1 GHz, 1.4 GHz or 1.8 GHz

– Up to 2 Mbyte L2 cache

– Up to 1.5 Gbyte DDR SDRAM

– Up to 2 Gbyte bootable dcs-sis.com CompactFlash

– One PCI-X PMC expansion bit

– 400 MHz system bus

– Front 10/100 BaseTX Ethernet ports

– Front 10/100/1000 Base Tx Ethernet port (non-VITA 31.1 option)

– 2 Gigabit Ethernet ports, optional VITA 31.1

– 4 serial ports

– 4 USB2.0 ports

– SATA support

– Mouse, keyboard, and SVGA routing to front panel

– Supports Windows® XP, Windows 2000. VxWorks®, QNX, and Linux® operating systems

– RoHS compliant

High performance and VITA 31.1 compliant.

The VME-7807RC is a highly flexible single board computer (SBC) with an integrated Intel Pentium M processor,

Intel Pentium M processor, up to 1.5 Gbyte of DDR SDRAM and dual Gigabit Ethernet, as well as PCI-X, 66 MHz PMC expansion slots.

Operating at up to 1.8 GHz, this SBC delivers high bandwidth and processing power, making it ideal for I/O intensive applications.

Utilizing Intel’s new highly integrated 6300ESB I/O controller hub.

The VME-7807RC offers four serial ports, four USB 2.0 ports, Serial ATA,

IDE and up to 2 Gbyte of optional Compactware up to 2 Gbyte of optional CompactFlash.

The SBC utilizes the Intel 855GME to provide SVGA and DVI-I graphics support.

PCI-5565PIORC Ultrafast Fiber Optic Reflective Memory with Interrupts

Features

Features include

– High-speed, easy-to-use fiber optic network (serial 2.12 GBaud)

– 33 MHz 64-bit/32-bit compliant PCI bus, 3.3 V or 5.0 V logic levels

– 66 MHz 64-bit/32-bit compliant PCI bus, 3.3 V logic level

– Host processor does not participate in network operation

– Optional redundant operation modes

– Up to 256 nodes

– Up to 256 nodes up to 300 m to multimode fiber, up to 10 km to singlemode fiber

– Dynamic packet sizes from 4 to 64 bytes of data per packet

– Fiber-optic network transfer rates of 43 MByte/s to 170 MByte/s

– 128/256 MB bytes of SDRAM reflective memory, with optional parity checking

– Independent direct memory access (DMA) channels

– Four general-purpose network interrupts; each interrupt has 32 bits of data

– Configurable endian translation for multiple CPU architectures on the same network

– Selectable PCI PIO window sizes from 2 MB bytes to 64 MB bytes to full installed memory size

– Supported Operating Systems Supports Windows® 2000. Windows XP, Linux®, and VxWorks® operating systems.

– RoHS compliant

Comparison of PMC-5565PIORC and VMIPMC-5565

The PMC-5565PIORC combines the components of the classic VMIPMC-5565 into a single FPGA (Field Programmable Gate Array).

These components include PLX Technologies’ PCI interface device, three separate small FPGAs, a transmit FIFO and a receive FIFO.

The PMC-5565PIORC adds greater design flexibility than the legacy VMIPMC-5565 and improves performance in at least three ways.

1. the PMC-5565PIORC has improved DMA burst and PIO single read access rates over the legacy VMIPMC-5565. 2. the PMC-5565PIORC has improved DMA burst and PIO single read access rates over the legacy VMIPMC-5565.

2. The PMC-5565PIORC’s onboard SDRAM memory access bandwidth has been doubled, improving overall throughput. doubled, increasing overall throughput.

3. The PMC-5565PIORC can be field upgraded as new features are added.

The legacy VMIPMC-5565 contains a set of control registers dcs-sis.com in the PLX device and a separate set of RFM-specific control registers in the FPGA.

Since these two sets of registers are physically located in different devices, they are accessed through different memory areas.

On the other hand, the PMC-5565PIORC contains two sets of registers in the same FPGA. These two sets of registers could have been combined.

However, in order to maintain software continuity and backward compatibility, the two sets of registers are stored separately as in the classic VMIPMC-5565.

In addition, the individual bit functions within the registers (where applicable) remain compatible.

The PMC-5565PIORC does not include a second DMA engine.

As shown below, the PMC-5565PIORC has an optical transceiver and three LEDs on the front panel.

The port labeled “RX” is the receiver and the port labeled “TX” is the transmitter.The PMC-5565PIORC uses an “LC” type fiber optic cable.

VMIVME-7740 VMEbus Single Board Computers

Microprocessor

– The VMIVME-7740 brings the Intel Pentium III processor to VMEbus.

The VMIVME-7740 introduces the Intel Pentium III processor to the VMEbus with processor speeds up to 850 MHz. the Pentium III processor has 32-bit addressing and a 64-bit data bus.

Its superscalar architecture allows three instructions per clock cycle. Dynamic branch prediction units, separate instruction and data caches, and MMX™ technology also increase processor performance.

The Pentium III processor also offers a 256 Kbyte Advanced Transfer Cache (on-chip, full-speed L2 cache) with dual independent bus architecture dcs-sis.com for high bandwidth and performance.

This L2 cache is clocked at the same frequency as the processor, which improves performance.

Memory

– The VMIVME-7740 accepts a 144-pin SDRAM SODIMM with a maximum memory capacity of 512 Mbyte.

The maximum memory capacity is 512 Mbyte. on-board DRAM is dual-ported to the VME bus.

BIOS

– The system and video BIOS is provided by reprogrammable flash memory.

Super VGA Controller

– High Resolution

The VMIVME-7740 supports high-resolution graphics and multimedia-quality video through the Chips & Technology AGP graphics adapter.

The adapter is complemented by 4 Mbyte of internal high-bandwidth 64-bit data interface synchronous DRAM.

The graphics adapter supports screen resolutions up to 1.600 x 1.200 x 64.000 colors (single view mode).

Ethernet Controller – The VMIVME-7740 supports Ethernet LAN through dual Intel 82559 Ethernet controllers.

Supports 10BaseT and 100BaseTX options through two RJ45 connectors. Remote LAN booting is supported.

Remote Ethernet Booting – The VMIVME-7740 utilizes Lanworks Technologies, Inc. BootWare to provide the ability to remotely boot the VMIVME-7740 using NetWare, TCP/IP, or RPL network protocols.

BootWare Features:

– Support for NetWare, TCP/IP, RPL network protocols

– Unrivaled boot sector virus protection

– Detailed boot configuration screens

– Comprehensive diagnostic capabilities

– Option to disable local boot

– Dual boot option allows user to select either network or local boot

Serial Ports – The VMIVME-7740 has two 16550-compatible serial ports on the front panel. The serial channel has a 16-byte FIFO and supports baud rates up to 56 kilobytes per second.

56 kilobytes per second. Two micro-DB9 to standard DB-9 adapters (VMIC P/N 360-010050-001) are required.

Keyboard and Mouse Interface – The VMIVME-7740 is equipped with a PS/2 combo keyboard and mouse interface. A Y adapter cable is included.

Flash Memory – The VMIVME-7740 provides up to 192 Mbytes of IDE CompactFlash flash memory, accessible through the auxiliary IDE port.The VMIVME-7740 BIOS includes an option to allow the board to boot from flash memory.

16-Bit Timers – The VMIVME-7740 provides the user with three 82C54-compatible 16-bit timers (in addition to the system timer). These timers are mapped to I/O space and are fully programmable by software.

Watchdog Timer – The VMIVME-7740 provides a software programmable watchdog timer.

The watchdog timer is enabled under software control. Once the watchdog timer is enabled, the on-board software must access the timer within the specified timer period or a timeout will occur. A user jumper allows the timeout to cause a reset.

Independent of the jumper, software can enable a watchdog timeout to cause a non-maskable interrupt (NMI) or VMEbus SYSFAIL.

VMIVME-1111 64-bit High Voltage Digital Input Board with Built-in Tests

Functions

– 64-bit differential or high voltage digital inputs

– Each group of 32 inputs can be monitored by jumper selection:

Contact closure, voltage source, current sink, or differential signal.

– Open provides logic zero dcs-sis.com or (jumper selectable) logic one.

– Input filter options

– On-board built-in test logic

– Front panel with fault LEDs

– Front panel with fault LEDs for fault detection and isolation

– User selectable input voltage thresholds (1.25 to 66V)

RS422/RS485-compatible differential line receiver provides ± 7V noise immunity

– 8-, 16-, or 32-bit data transmission

– Dual Eurocard form factor

– High-reliability DIN-type I/O connectors

– Compatible with GE Fanuc Embedded Systems’ family of intelligent I/O controllers (901x and 906x series)

– Boot Replacement Option

– Software compatible with VMIVME-1110

Functional Features

Compatibility: Compatible with VMEbus specification. Double height form factor.

Input Connector Type: Dual 64-pin connector – DIN 41612

Input/Output Organization Eight input ports; eight bits wide. Addressable to any address within the short-circuit monitor and/or short-circuit unprivileged I/O map. Control and Status Register (CSR) addresses are independently selectable.

Addressing Scheme: Each of the eight ports can be addressed on 8-, 16-, or 32-bit boundaries. One CSR can be addressed on 8-bit boundaries. 13 jumpers provide unlimited short data I/O address mapping options.

Differential Signal Input Characteristics: Common Mode Input Voltage Range: -30 to +66 V. Common Mode Input Voltage Range: -7 to +12 V. Input Sensitivity ± 100 mV. High Input Impedance (33 kΩ).

Single-Ended Signal Input Characteristics: High input impedance (33kΩ). Threshold accuracy of 1% (typical) over the entire 66V range.

Signal Conditioning Input Filter Terminator Option: The board can be ordered with an input signal filter circuit.

For differential inputs, the circuit consists of a series resistor and capacitor connected across the signal input. For single-ended inputs, the circuit provides an input dither filter with a user-selectable time constant.

Built-in Test: The board is designed with internal self-test logic to test all active components.

Special output registers are provided to generate 16-bit data words for worst-case bit patterns to be used as health tests during real-time or off-line operation.

A special test mode bit in the CSR enables the output test register to drive a differential receiver.

The front panel fault LED illuminates at power-up and can be programmed to go out after successful completion of user-defined diagnostics.

VMIVME-1150 64-bit Optically Coupled Digital Input Board

-64 optically coupled digital inputs

-5 V to 48 VDC input range

-High isolation, 1.000 V continuous, 7.500 V pulse voltage

-Filter input options

-Dual I/O connectors

-Contact closure sensing

-Voltage or current source input options

-Positive or negative true input options

-Dual Eurocard form factor with front panel

8-bit or 16-bit data transfer

-Unprivileged or supervisory I/O access

-Highly reliable DIN-compatible input connectors

Functional Features

Board Features:

This 64-bit optically coupled digital input board is designed and optimized for the VME bus.

The VMIVME-1150 is highly isolated and provides a flexible, low cost, high noise immunity 8-byte digital input port. The functional block diagram is shown below.

Compatibility:

The VMIVME-1150 is a standard double height printed circuit board that is electrically and mechanically compatible with the VME bus.

Input Organization:

Eight input ports, each eight bits wide. The ports are organized as eight consecutive 8-bit read-only registers.

Addressing Scheme:

Each 8-bit port is individually addressable anywhere within an 8-bit or 16-bit boundary.

Short-circuit monitoring or short-circuiting anywhere within unprivileged I/O space.

Board Address:

The board address is selected by the on-board DIP switches. Runs in any available slot on the VMEbus backplane except slot 1.

VMEbus Access:

The address modifier bits are decoded to support short supervised or unprivileged short I/O access. A jumper is provided to support this option. The board is factory configured for short supervised I/O access.

VME Bus Reply:

The DTACK reply is a response to a data select (DS0 or DS1) and the decoded board address.

Board Address.

Data Transfer Type:

D8. D16

Access Time

Maximum 250 milliseconds

Data Polarity

Sorted by positive or negative true. This depends on the input assertion of the board. To assert an input, current must flow through the LED in the optocoupler.

For positive “true” boards, this current will indicate a logic “1” to the VME bus. If the board is ordered with negative true logic, the board will display a logic zero to the VMEbus when current is flowing through the LED.

Input Characteristics

Signal Conditioning:

The input can be either a voltage or current source with a voltage range of 5 to 48 V. The input can be either a voltage or current source with a voltage range of 5 to 48 V.

IS215AEPAH1A Fan Control Card Printed Circuit Boards

Hardware Tips and Specifications

This IS215AEPAH1A Alternative Energy Power Assembly may be best understood when its hardware elements are contextualized according to the intended function of this printed circuit board.

The first descriptor for the function of this AEPA-abbreviated product is present in its functional description as an alternative energy power supply assembly.

This functional description happens to be an exact match to the AEPA functional acronym for this product, a rare blessing for a specialized Mark VIe series product.

The series to which this IS215AEPAH1A board belongs actually provides additional insight into the functionality of this product.

Considering the place of the IS215AEPAH1A dcs-sis.com PCB in the Mark VIe family of wind turbine control systems, it is not surprising that this GE Energy board is dedicated to wind turbine applications.

Now that the functional status of this IS215AEPAH1A PCB as an alternative energy power supply assembly has been described.

Then it is possible to highlight some of the hardware specifications available for this Mark VIe wind turbine series product.

Considering this product’s place in the specialized and recently developed Mark VIe wind turbine family, little original product-specific instruction manual material detailing the hardware of this IS215AEPAH1A PCB exists online.

That said, this initial Mark VIe series label identifies the board as an alternative energy power supply assembly with special component versions.

This IS215 series label has dual naming capabilities for this IS215AEPAH1A product; it also outlines its status as a domestic GE printed circuit board.

The original manufacturing location of this PCB can be traced more specifically to GE’s plant location in Salem, Virginia.

In this IS215AEPAH1A part number, the IS215 series label is followed by an example of the AEPA functional acronym.

It is itself followed by the H1 series grouping label, which, like the IS215 series label mentioned earlier, provides a dual naming convention for this product.

This H1 grouping label indicates that the product is a conformal coated printed circuit board with Mark VIe series grouping.

While the conformal style of PCB coating specific to this power supply assembly is well documented, given its widespread use on General Electric circuit boards, the first Mark VIe grouping of this part is the Mark VIe grouping.

The true meaning of the first set of Mark VIe series alignments for this component has been lost.

The last A digit of the IS215AEPAH1A part number is a reference to a Class A functional revision of this part, which may significantly affect the performance specifications and original measured dimensions of this IS215AEPAH1A product.

IS215VCMIH2CC Bus Master Controller Module Communication Converter Card

Functional Description

The IS215VCMIH2CC is a GE-developed bus master controller module that is part of the Mark VI control system.

It is part of the Mark VI control system.The VCMI bus master controller plays a key role in the system architecture as an integrated communications interface that coordinates the exchange of data and commands.

As the link between the master dcs-sis.com controller and the array of I/O boards, the VCMI ensures smooth and efficient communication channels and facilitates seamless integration of the various components.

In addition, VCMI’s importance is reflected in its connection to the wider system control network, known as the IONet, which plays a vital role in coordinating communications across the network infrastructure.  

Features

A distinctive feature of the VCMI is that it acts exclusively as a VMEbus master within the control and input/output racks.

The VCMI is responsible for the VMEbus, a standardized computer bus structure, and oversees the coordination of data transfer and control signals within these racks.

The VCMI manages the assignment of unique identification (ID) to all boards in the rack and their associated terminal boards.

This ID management function ensures that the various components within the rack are identified and interacted with in a systematic and organized manner, thereby increasing the overall efficiency and reliability of the system.

The VCMI Bus Master Controller is a multifaceted communications hub that seamlessly connects controllers, I/O boards and the broader system control network.

As a VME Bus Master Controller in a given rack, it enhances its ability to manage and optimize the flow of information, ultimately improving the performance and cohesiveness of the integrated system.

Board Type: 6U High VME Boards

The boards specified are classified as 6U High VME boards and are dimensioned to meet the widely adopted VME standard. At 6U high, the boards conform to a standard form factor and are compatible with a range of systems and platforms that meet the same specifications.

At 0.787 inches wide, this VME board integrates seamlessly into the VME chassis, contributing to the modularity and scalability of the overall system.

Multilin 745-W2-P1-G1-HI-T-H Transformer Protection Relay

The GE Multilin 745-W2-P1-G1-HI-T-H Transformer Protection Relay features transformer overload protection and overexcitation protection to ensure smooth transformer operation.

It also monitors, records and displays trends in system variables such as temperature, voltage, power, energy consumption and dcs-sis.com rate of change of frequency.

Product Description

The 745-W2-P1-G1-HI-T-H is a GE Multilin transformer protection relay that extends transformer life expectancy and optimizes transformer performance.

It protects and manages small, medium and large transformer systems. Part of the 745 Series, the 745-W2-P1-G1-HI-T-H features transformer overload protection and overexcitation protection to keep transformers running smoothly.

It also monitors, records and trends system variables such as temperature, voltage, power, energy consumption and frequency rate of change.

These values can be quickly referenced through the relay’s software program, Enervista 745.

The Enervista 745 software program can also be used to edit setpoints. Utilizing GE Multilin’s quick connect feature, the

Connecting the relay to a computer is simple with the GE Multilin Quick Connect feature. The connection can be established via Ethernet, the RS232 port on the front, or the RS485/RS422 port on the back of the panel.

The program assists in managing system setup and automatically flags programming errors or conflicts as the user adjusts setpoints.

The 745-W2-P1-G1-HI-T-H’s enhanced 40-character display is larger than the base model and includes an extended keypad for easy manual setpoint entry.

The enclosure is 9″ high by 7″ wide by 7 ⅛” deep. The transformer protection system can be mounted on a standard 19″ panel, but care should be taken that the enclosure door opens and closes freely without contact with other components.

A number of LEDs on the front of the chassis alert the user to various statuses and errors in real time.

Frequently Asked Questions about the 745-W2-P1-G1-HI-T-H

What makes the Multilin 745-W2-P1-G1-Hi-T-H unique compared to other transformer protection relays in the 745 series?

The 745-W2-P1-G1-Hi-T-H Multilin transformer protection series contains unique options that differ from other part numbers.

Notably, the “-H” option indicates that the relay has a harsh chemical environment conformal coating for operation in harsh environments.

The T option in the 745-W2-P1-G1-Hi-T-H Multilin Dual Winding Transformer Management Relay differs from other relays in the 745 system in terms of display and Ethernet.

Transformer protection systems without the T option have either a basic display (B) or an enhanced display (E) with a larger LCD.

The T option comes with an enhanced display, larger LCD, and 10Base-T Ethernet.

Multilin 489 Generator Protection System SR Series Relays

The Multilin™ 489 Generator Protection System is a member of the SR Series of relays that provides protection, control, and advanced communications in an industry-leading drawout configuration.

Designed for small to medium sized generators, the 489 offers advanced protection features, including generator stator differential protection. 489 also includes detailed diagnostic information to reduce troubleshooting time.

Key Benefits

– Comprehensive, safe protection for small and medium-sized generators

– Easy-to-use generator protection system supported by an industry-leading suite of software tools.

– Advanced protection and monitoring features, including stator and bearing thermal protection using RTDs and vibration monitoring using analogue inputs

– Globally recognised as a member of the most prestigious relay protection product family on the market

– Drawer construction to minimise downtime and facilitate removal/installation during routine maintenance 489

– Large, user-friendly front panel interface for real-time power monitoring and setpoint access, with a display that is easy to read in direct sunlight

– Enhanced generator troubleshooting capabilities through the use of IRIG-B time-synchronised event logging, waveform capture and data logger

– Simplifies setpoint verification testing with built-in waveform simulation capabilities

– Cost-effective access to information through industry-standard communications hardware (RS232. RS485. 10BaseT Ethernet) and protocols (Modbus RTU, Modbus TCP/IP, DNP 3.0)

– Can be used in most extreme locations by offering harsh chemical environment options

Applications

– Synchronous or induction generators operating at 25Hz, 50Hz or 60Hz

– Primary or backup protection in cogeneration applications

Protection and control

The 489 generator protection system provides comprehensive protection, metering and monitoring functions,

The 489 generator protection system provides comprehensive protection, metering and monitoring functions for small and medium-sized synchronous or induction generators operating at 25. 50 or 60 Hz.

The 489 is ideal for primary or standby generator protection as well as cogeneration applications.

The 489’s protection features include:

Generator stator differential

The 489 uses high speed dual slope differential protection to detect and clear stator phase faults.

Stator phase faults. Advanced CT saturation detection algorithms provide additional supervision through the use of directional checks that

ensures that the fault occurs inside the generator before triggering a trip, thus maintaining immunity to saturation that may be caused by external disturbances.

100% Stator Ground

100% stator ground fault protection is provided by an overvoltage element and an adaptive differential voltage function that responds to third harmonic imbalances at the machine terminals and neutral.

SR469-P5-LO-A20-T Relay Protector Module

The SR469-P5-LO-A20-T has a 5 amp current transformer secondary coil mounted on the base unit.

It is a low control power unit rated for 24-60 volts DC or 20-48 volts AC @ 48-62 Hz.

Although the unit has an optional Ethernet port, it does not include the optional DeviceNet or enhanced front panel.

Product Description

The SR469-P5-LO-A20-T is an SR469 multi-wire relay designed to provide comprehensive protection for medium to large motors. The unit offers many management features.

The SR469-P5-LO-A20-T has a 5 amp current transformer secondary coil mounted on the base unit.

It is a low control power unit rated for 24-60 volts DC or 20-48 volts AC @ 48-62 Hz.

Although the unit has an optional Ethernet port, it does not include the optional DeviceNet or enhanced front panel.

In addition, it is not designed for harsh environments as it does not include a chemically conformal coating.

The SR469-P5-LO-A20-T includes an optional Ethernet 10BaseT Ethernet port.

With this additional port, users can connect their 469 units to 10 Mbps Ethernet.

This port brings the number of ports in the unit to four, including the three standard serial ports that are always displayed in the SR469 relay.

All SR469 relays have two RS485 ports on the real panel. In addition, there is an RS232 port on the bottom of the front panel.

This port provides quick access for troubleshooting and programming.The SR469-P5-LO-A20-T supports ModBus RTU and ModBus RTU via TCP/IP.

The GE Multilin manual will provide the user with additional information on installation, safety and proper operation.

Original documentation such as manuals and user guides should be read and understood before opening the box; this will ensure that you are aware of all possible hazards and ensure your safety.

Frequently Asked Questions about the SR469-P5-LO-A20-T

What are the standard features of the SR469-P5-LO-A20-T General Electric Motor Management Relay?

All 469 Motor Management Relay features are standard. Although the analogue output range, phase current transformer secondary and control power must be specified prior to purchase, the

to ensure that the correct standard features are purchased for the relay. Some features are programmable, such as the 469 relay’s differential current transformer input with a 1A or 5A secondary current transformer.

Search for products

Back to Top
Product has been added to your cart